Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media

نویسندگان

  • Cheng Ma
  • Xiao Xu
  • Yan Liu
  • Lihong V. Wang
چکیده

The ability to steer and focus light inside scattering media has long been sought for a multitude of applications. To form optical foci inside scattering media, the only feasible strategy at present is to guide photons by using either implanted1 or virtual2-4 guide stars, which can be inconvenient and limits potential applications. Here, we report a scheme for focusing light inside scattering media by employing intrinsic dynamics as guide stars. By time-reversing the perturbed component of the scattered light adaptively, we show that it is possible to focus light to the origin of the perturbation. Using the approach, we demonstrate non-invasive dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media. Anticipated applications include imaging and photoablation of angiogenic vessels in tumours as well as other biomedical uses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-reversed adapted-perturbation optical focusing onto dynamic objects inside scattering media

Determination of optimal phase offset. Digital phase-shifting holography measures the relative phase of light at different pixels; the absolute phase values are unknown, and an unavoidable phase offset exists between the two measured fields. For example, a phase offset can be induced by a drift of the optical path length difference between the sample and reference arms due to environmental inst...

متن کامل

Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation

Light scattering inhibits high-resolution optical imaging, manipulation, and therapy deep inside biological tissue by preventing focusing. To form deep foci, wavefront-shaping techniques that break the optical diffusion limit have been developed. For in vivo applications, such focusing must provide a high gain, high speed, and a high focal peak-tobackground ratio. However, none of the previous ...

متن کامل

Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light.

Focusing light deep inside living tissue has not been achieved despite its promise to play a central role in biomedical imaging, optical manipulation and therapy. To address this challenge, internal-guide-star-based wavefront engineering techniques--for example, time-reversed ultrasonically encoded (TRUE) optical focusing--were developed. The speeds of these techniques, however, were limited to...

متن کامل

Time-reversed ultrasonically encoded optical focusing into scattering media

Light focusing plays a central role in biomedical imaging, manipulation, and therapy. In scattering media, direct light focusing becomes infeasible beyond one transport mean free path. All previous methods1-3 to overcome this diffusion limit lack a practical internal "guide star."4 Here we proposed and experimentally validated a novel concept, called Time-Reversed Ultrasonically Encoded (TRUE) ...

متن کامل

Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light.

Focusing light inside scattering media in a freely addressable fashion is challenging, as the wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided wavefront shaping methods are addressing this challenge, albeit with relatively low modulation efficiency and resolution limitations. In this paper, we present a new technique, time-reversed ultrasound microbubb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014